The influence of alkali and alkaline earths on the working range for bioactive glasses

Viscosity-temperature dependence has been investigated for glasses in a system where bioactive compositions are found. A glass is called bioactive when living bone can bond to it. In this work, high-temperature microscopy was used to determine viscosity-temperature behavior for 40 glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2. The silica content in the glasses was 39-70 wt %. All glasses containing <54 mol % SiO2 devitrified during the viscosity measurements. Generally, glasses that devitrified contained more alkali but less alkaline earths than glasses with a large working range. A working range is the temperature interval at which forming of a glass can take place. This temperature interval can, for bioactive glasses, be enlarged by decreasing the amount of alkali, especially Na2O, in the glass and by increasing the amount of alkaline earths, especially MgO. Optionally, B2O3 and P2O5 can be added to the glass. An enlarged working range is a prerequisite for an expanded medical use of bioactive glasses as, e.g., sintered and blown products, and fibers.